Printed Page:-			Subject Code:- AMTCSE0213	
			Roll. No:	_
-				
Ν	NOID.		ND TECHNOLOGY, GREATER NOIDA	
		(An Autonomous Institute Aff M.Te	•	
		SEM: II - THEORY EXAM		
		Subject: Digital In		
Tim	e: 3 H	lours	Max. Marks: 7	70
		tructions:		
		·	aper with the correct course, code, branch etc.	
		stion paper comprises of three Section. MCQ's) & Subjective type questions.	s -A, B, & C. It consists of Multiple Choice	
_		n marks for each question are indicated	d on right -hand side of each auestion.	
		your answers with neat sketches wher	· -	
		uitable data if necessary.	•	
,		ly, write the answers in sequential orde		
		should be left blank. Any written mater	rial after a blank sheet will not be	
evalud	ited/c	hecked.		
SECT	TON.	-Δ		15
		all parts:-	12025	J
1. Au		amma rays have —— (CO1,K1)		1
1-a.		•		1
	(a)	energy		
	(b)	power		
	(c)	wavelength		
	(d)	frequency		
1-b.		he technique of Enhancement that has result, is called?(CO2, K1)	a specified Histogram processed image, as	1
	(a)	Histogram Linearization		
	(b)	Histogram Equalization		
	(c)	Histogram Matching		
	(d)	None of the mentioned		
1-c.	T	he circular convolution of two sequence	ees in time domain is equivalent	1
	to	o(CO3,K2)		
	(a)	Multiplication of DFTs of two seque	nces	
	(b)	Summation of DFTs of two sequence	es	
	(c)	Difference of DFTs of two sequence	s	
	(d)	Square of multiplication of DFTs of	two sequences	
1-d.	F	or noise reduction we use(CO4,K1)		1
	(a)	image smoothing		

	(b) image contouring		
	(c) image enhancement		
	(d) image recognition		
1-e.	For HSI color space, no of transformations will be(CO5,K1)	1	
	(a) $n=2$		
	(b) $n = 3$		
	(c) n = 4		
	(d) n = 5		
2. At	tempt all parts:-		
2.a.	Calculate the Euclidean distance between the following two pixels in a 2D image: $(x1, y1) = (2, 3), (x2, y2) = (5, 7).$ (CO1,K3)	2	
2.b.	Explain the role of homomorphic filtering in image enhancement.(CO2,K2)	2	
2.c.	Write The Properties Of Sine Transform. (CO3,K1)		
2.d.	Illustrate three types of discontinuity in digital image. (CO4, K2)		
2.e.	Define Hue and saturation. (CO5,K1)	2	
SEC'	TION-B	20	
3. An	nswer any <u>five</u> of the following:-		
3-a.	Discuss any four low-level image-processing operations.(CO1,K2)		
3-b.	Perform a 3x3 convolution on the following image using the kernel, and find the Kernel: $\begin{pmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{pmatrix} \text{Image:} \begin{pmatrix} 5 & 10 & 15 \\ 20 & 25 & 30 \\ 35 & 40 & 45 \end{pmatrix}$ output image:(CO1,K3)	2	
3-c.	Perform histogram equalization on the following 3x3 image matrix and show the resulting output.(CO2,K3)	۷	
	Image: $\begin{pmatrix} 60 & 120 & 180 \\ 80 & 140 & 200 \\ 100 & 160 & 220 \end{pmatrix}$		
3-d.	Write the steps involved in frequency domain filtering.(CO2,K2)		
3.e.	Explain the concept of the 1D Ordered Hadamard Transform. Provide the steps for its calculation and illustrate its application.(CO3,K3)		
3.f.	Explain the advanced Techniques for Edge Detection in detail.(CO4,K2)		
3.g.	Explain Psycho-visual redundancy in image compression.(CO5,K2)		
SEC'	TION-C	35	
4. An	nswer any <u>one</u> of the following:-		
4-a.	Explain the fundamental steps of image processing. (CO1,K2)		
4-b.	Explain the concept of spatial resolution with example. (CO1.K2)		

- 5. Answer any one of the following:-
- 5-a. Illustrate the concepts of smoothing and sharpening spatial filters with examples. How smoothening impacts the image enhancement. (CO2,K2)
 - 7

5-b. Discuss histogram specification and its differences from histogram equalization. (CO2,K2)

7

7

7

- 6. Answer any one of the following:-
- 6-a. Differentiate between 1-D DCT transform and 2-D DCT transform.(CO3,K4)
- 6-b. Explain Haar Transform with suitable equations.(CO3,K2)
- 7. Answer any one of the following:-
- 7-a. Describe the compass and Laplace operators and their role in edge detection.(CO4,K2)
- 7-b. Explain the Hit or Miss transform with example and its use in morphological image analysis.(CO4,K3)
- 8. Answer any <u>one</u> of the following:-
- 8-a. Explain lossless and lossy compression. Given the following 5x5 image matrix, apply a simple predictive coding method to compress it. Perform both lossless and lossy predictive coding and compare the results. (CO5,K4)

Image:
$$\begin{pmatrix} 10 & 20 & 30 & 40 & 50 \\ 60 & 70 & 80 & 90 & 100 \\ 110 & 120 & 130 & 140 & 150 \\ 160 & 170 & 180 & 190 & 200 \\ 210 & 220 & 230 & 240 & 250 \end{pmatrix}$$

8-b. Explain the methods and challenges of color image compression and its importance in reducing data size.(CO5,K4)

7